Les algorithmes ont pris le contrôle de l’économie

Les données des entreprises se transforment en produits et services grâce aux algorithmes. Le développement et la maitrise de ces algorithmes vont devenir un enjeu économique majeur pour les entreprises qui veulent rentrer dans l’ère du numérique à l’exemple des GAFA qui accélèrent dans le domaine du machine learning par coup d’acquisition de start up.

algorithme

Comme le pétrole, la donnée doit être transformée pour rencontrer les usages. En 2010, le journal The Economist nous alertait sur le « Data Deluge » et mettait ainsi un coup de projecteur médiatique sur le Big Data. Une analogie bien choisie à l’époque montrant que la donnée était une ressource au même titre que l’eau. Pour la canaliser et la stocker dans un « lac de données » il fallait revoir les infrastructures informatiques. On a vu ainsi arriver les systèmes Hadoop et les bases de données No SQL .

Plus récemment l’analogie s’est portée sur l’or noir, une manière de signifier que les données étaient une ressource essentielle de la nouvelle économie. En comparant la donnée à l’or noir nous évoluons vers une étape très révélatrice. Nous quittons la phase du déluge, qui menaçait nos infrastructures, pour entrer dans la phase de transformation nécessaire à la création de valeur au travers de nouveaux produits et de nouveaux services. On a pris conscience que si la donnée constituait un capital pour les entreprises, sa valeur ne pouvait être révélée qu’après des étapes de transformation qui, pour une grande part, vont être réalisées par les fameux « algorithmes ».

L’économie devient algorithmique. Le directeur de recherche de Gartner, Peter Sondergaard,  n’hésite pas à parler «  d’une économie algorithmique qui permettra le prochain grand bond de l’évolution du machine to machine dans l’internet des objets » (lire l’article) . On peut aujourd’hui difficilement dissocier big data et intelligence artificielle. Les usages du Big data mettent en œuvre des systèmes de Machine Learning et de deep Learning manipulant des algorithmes de plus en plus complexes.

Rappelons que dans le Machine learning, le système apprend par lui-même (auto apprentissage) et permet ainsi de résoudre des problèmes ou il est impossible de prévoir tous les cas de figures à priori. Le deep learning est quant à lui une forme du machine learning plus complexe qui essaye de se comporter comme le cerveau humain avec un système de type neuronale.

Les GAFA s’agitent autour des startups de machine Learning. Les GAFA (Google, Apple, Facebook, Amazon) ont compris depuis longtemps que leur activité et leur succès dépendaient de leur capacité à traiter ces énormes quantités de données avec ces technologies de Machine learning et de deep learning.

Début octobre Apple a racheté la société « VocalIQ » , un spécialiste du machine learning pour la reconnaissance vocale. Cette acquisition permettra d’améliorer le fonctionnement de l’outil Siri pour le rendre encore plus « intelligent ». Quelques jours plus tard Apple jetait son dévolu sur la startup « Perceptio » elle aussi spécialisée dans le machine Learning mais dans le domaine des photographies. Une acquisition qui devrait faciliter et optimiser la classification des photos sur les smartphones. Facebook est lui aussi un grand utilisateur de Machine Learning et, quand en juin 2015 il lance “Moments”, il utilise là encore des algorithme de pour reconnaitre les visages de personnes sur différentes photos. En 2014 Google avait investi 500 millions de dollars pour la start up d’intelligence artificielle DeepMind basée en Angleterre. Cette semaine Google a investi au travers de sa filiale allemande dans DFKI (le centre de recherche allemand pour l’intelligence artificielle). Avec l’acquisition de ces startups, ce sont également de nouvelles compétences que l’on recherche : les datascientists.

La maitrise de ces algorithmes est critique pour les nouveaux modèles économiques. Cela nous montre à quel point la maitrise de ces algorithmes est critique pour les nouveaux modèles économiques et pour optimiser les processus existants. Ce ne sont pas que les GAFA qui sont concernés mais bien toutes les entreprises et tout particulièrement le e-business. Derrière le terme générique de Big Data c’est bien souvent des méthodes de machine learning que l’on trouve par exemple pour :

  • L’analyse prédictive du panier d’achat du consommateur
  • L’analyse de sentiments
  • La détection de fraude
  • L’analyse de risques bancaires
  • La reconnaissance du langage ou des visages

L’homme va t’il perdre le contrôle . Le machine learning fait appel à des algorithmes de plus en plus complexes mais ils permettent de s’adapter à des contextes ou les statistiques seuls ne suffiraient pas. Par là même il devient difficile pour un être humain de comprendre ce que fait la machine. Comment dans ce cas s’assurer que la prédiction est fiable ? Comment être sûr que la machine n’a pas trouvé, par un « sur apprentissage » (overfitting), une corrélation entre deux événements alors qu’il n’y avait aucun lien de cause à effet entre les deux ? Pour diminuer ce risque et être capable de mesurer la fiabilité d’un résultat, les domaines des statistiques et du machine learning se sont rapprochés ces dernières années.

Mais la crainte va au-delà de la fiabilité des algorithmes. La protection des données personnelles en est un exemple. L’application de partage de photos de Facebook « Moments », citée précédemment, n’est pas encore disponible en Europe. L’autorité européenne, en charge de la protection des données personnelles, a estimé que la technologie de reconnaissance faciale ne devait pas être activée par défaut sans l’accord explicite des utilisateurs concernés. L’omniprésence des algorithmes qui analysent nos comportements et guident nos choix crée une nouvelle forme de pouvoir exercé par des entreprises ou des gouvernements qui conçoivent ces algorithmes. Reste à savoir comment garantir l’éthique de ces algorithmes.

 

 

 

3 réflexions sur “Les algorithmes ont pris le contrôle de l’économie

Laisser un commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l'aide de votre compte WordPress.com. Déconnexion / Changer )

Image Twitter

Vous commentez à l'aide de votre compte Twitter. Déconnexion / Changer )

Photo Facebook

Vous commentez à l'aide de votre compte Facebook. Déconnexion / Changer )

Photo Google+

Vous commentez à l'aide de votre compte Google+. Déconnexion / Changer )

Connexion à %s